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An approach based on mosquitoes carrying a conditional dominant
lethal gene (release of insects carrying a dominant lethal, RIDL)
is being developed to control the transmission of dengue viruses
by vector population suppression. A transgenic strain, designated
0X3604C, of the major dengue vector, Aedes aegypti, was engi-
neered to have a repressible female-specific flightless pheno-
type. This strain circumvents the need for radiation-induced steri-
lization, allows genetic sexing resulting in male-only releases, and
permits the release of eggs instead of adult mosquitoes. 0X3604C
males introduced weekly into large laboratory cages containing
stable target mosquito populations at initial ratios of 8.5-10:1
0X3604C:target eliminated the populations within 10-20 weeks.
These data support the further testing of this strain in contained
or confined field trials to evaluate mating competitiveness and
environmental and other effects. Successful completion of the field
trials should facilitate incorporation of this approach into area-
wide dengue control or elimination efforts as a component of
an integrated vector management strategy.
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engue fever is a rapidly emerging arthropod-borne viral

disease threatening one-third of the world’s population (1).
In the absence of effective drugs and vaccines, mitigation efforts
focus on controlling the primary mosquito vector, Aedes aegypti.
However, current control methods are inadequate and new meth-
ods are needed urgently (2, 3). A key challenge in the control of
Ae. aegypti is finding and treating each of the many breeding sites
of this mosquito, which oviposits in diverse natural and artificial
containers (4-6). Chemical control is increasingly restricted due
to potential human toxicity, mortality in nontarget organisms,
insecticide resistance, and other environmental impacts (7-9).
Release of insects carrying a dominant lethal (RIDL) is a genetic
control strategy derived from classical sterile insect technique
(SIT) that provides a new solution to the challenges facing
current control efforts (10-14).

SIT is a species-specific, environmentally friendly control
method that involves the rearing, sterilization, and release of
large numbers of disabled insects (15, 16). These sterile insects
mate with wild insects in the target population, thereby reducing
the reproductive potential of the target and, if sufficient numbers
of sexually competitive insects can be released, achieving local
control or even elimination. Large-scale SIT programs have sup-
pressed or eliminated a number of major agricultural pests (15).
SIT approaches for mosquito control have been tried (17-19) and
continue to be proposed (20, 21). Factors that may have limited
the success of these initial mosquito SIT programs and that are
of continued concern in proposed SIT applications include re-
duced mating competitiveness and residual fertility of irradiated
males (22, 23), the need to release exclusively males (male
mosquitoes do not take blood meals) (20, 24), and reduction
of density-dependent larval mortality due to early acting lethality
(22, 25, 26). These limitations may be overcome using recombi-
nant DNA technology to engineer repressible dominant-lethal
transgenes for an RIDL strategy (4-7).
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The Ae. aegypti OX3604C strain has the genetic features
necessary to produce highly penetrant, dominant, late-acting,
female-specific lethality (14). These transgenic mosquitoes carry
genes that impose a tetracycline-repressible flightless-female
phenotype. This phenotype is effectively lethal because flightless
females cannot mate, seek hosts, or avoid predators. Importantly,
they cannot serve as vectors for dengue viruses. Here we describe
the results of testing this strain for its efficacy in suppressing a
target wild-type population of mosquitoes in laboratory-based,
large-cage trials.

Results
0X3604C (14) was outcrossed to a genetically diverse laboratory
strain (GDLS) of Ae. aegypti derived from a mixture of equal
numbers of 10 geographically distinct collections made in 2006
from Chiapas, Mexico (27). The outcrossed OX3604C males
released in this experiment are expected to be homozygous for
the transgene in a genetic background that is approximately
96.9% GDLS. The rationale for the outcrossing procedure was
to create an OX3604C strain containing a similar genetic back-
ground to that of the target population and to maintain the
competitive fitness of OX3604C males (28). The objective of
this study is to assess the efficacy of the RIDL strategy using this
outcrossed OX3604C strain to eradicate target populations of
GDLS Ae. aegypti in large (232-504 ft*) laboratory cages.
Target populations of GDLS were established in six cages
(Fig. S1) over the course of 12 weeks prior to the release of
0X3604C (Figs. 1 and 2). Stable egg and adult densities in all
six cages were achieved by Week 6. Three of the six cages were
assigned randomly at Week 13 as treatment cages and approxi-
mately 900 OX3604C males, representing release ratios of
8.5-10 OX3604C:1 GDLS, were released into them weekly
thereafter (Fig. S2). The weekly numbers of larvae returned to
the treatment cages were adjusted relative to the weekly return
rate in the control cages (held constant at 200 second-instar
larvae/week) to reflect any impact of OX3604C release on egg
production.
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Fig. 1. Egg production in treatment and control cages. Weekly egg production is shown for each control and treatment cage. Production numbers were stable
in all cages by Week 4 after population establishment. After 0X3604C male release was initiated (vertical dashed line) in the treatment cages (Week 13;
Week 0 PR, top time axis), egg production in the control cages continued to be stable but gradually declined in the treatment cages, with a clear reduction
relative to controls by Week 5 PR. The populations in the treatment cages became extinct (defined as two consecutive weeks with no egg production) by weeks

10, 15, and 20 PR (arrows).

Reductions in egg and adult numbers in treatment cages
relative to control cages became evident by Weeks 5-6 and
6-8 postrelease (PR), respectively, of OX3604C (Figs. 1 and 2).
Transgene introgression into the caged populations was detected
first during Week 3 PR by the presence of the DsRed marker
gene (4, 5) in random samples of larvae hatched from eggs
collected from treatment cages (Fig. 3) (29). The majority of
larvae in all treated cages carried the transgene by Week 8 PR.
All larvae expressed DsRed in two of the treatment cages; how-
ever, the percentage varied over time in the third cage and never
reached 100% (Fig. 3). Subsequently, cage populations reached
extinction (defined as two weeks without eggs) by 10, 15, and
20 weeks PR (Fig. 1).

Discussion

We show that the OX3604C strain can cause elimination of a
target population within an epidemiologically relevant time
frame. In addition, release ratios increased as the experiments
proceeded, favoring the elimination of the target population de-
spite the fact that actual numbers of released males remained
fixed. The utilization of the genetically engineered male mosqui-
toes to find target females mitigates human involvement in de-
tecting the breeding sites and relieves the need to introduce
toxic chemicals into the environment.

The variation in the time to eradication (10-20 weeks PR)
could represent the differences in the cage sizes, cage conditions,
or stochastic variants among replicates. Variation also could
result from differential longevity among inseminated target
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Fig. 2. Adult female populations in treatment and control cages. Adult female populations were sampled weekly with BGS-Traps for one hour (no lure). The
numbers of trapped females are shown. Populations had declined in all treatment cages by eight weeks PR while the populations in the control cages con-
tinued at the prerelease levels. In all treatment cages, numbers of trapped females reached zero prior to extinction (defined as two consecutive weeks without
eggs; Fig. 1 and text). The mosquitoes in the control cages were collected and counted at the end of the experiment. Six hundred eighteen adult females were
recovered (222, 185, and 211 from cages 1, 2, and 3, respectively). Compared with the Week 33 BGS-Trap catch of 31, 35, and 59 females, this indicates a
trapping efficiency in the weekly monitoring of approximately 20%.

Wise de Valdez et al. PNAS | March 22,2011 | vol. 108 | no.12 | 4773

APPLIED BIOLOGICAL

SCIENCES



Bane

/

I\

=y

N=120 N=38 N=91 N=10 _N=112_N=5
100 1 @ Treatment Cage A A No 1;1-
B Treatment Cage B N=69 F -
¥ Treatment Cage C 3 N =188
80 1 w\
|
o \
g 60 - \
P | N=121
] \
o |
O 40 1 |
% .
|
a \ |
E P L
b
]
Y
0 | ¥N-25
Cage B extinct Cage C extinct Cage A extinct
(week 10) ~. (week 15) s (week 20)
T T T T T T T T T T 1
0 2 4 6 8 10 12 14 16 18 20

Week of OX3604C male addition

Fig. 3.

Progeny genotypes in the treatment cages. Random samples of eggs from each weekly collection were hatched and the larvae screened for DsRed. Two

hundred larvae were screened unless otherwise marked. The percentage of DsRed larvae reached 100% in two of the three treatment cages prior to extinction.
The percentage of larvae positive for the OX3604C construct in the third cage varied over time and never reached 100%. The missing data from Cage A,
Week 19, was due to the eggs collected not hatching. As expected, the frequency of the transgene in the larvae from collected eggs increased before adult

female numbers or egg production decreased.

females, and this also is expected to be a key factor in the time
scale for suppression. Females typically mate only once and then
deposit eggs fertilized by sperm stored in the spermathecae
(29, 30). Therefore, the genotype of these eggs reflects the mating
choice of the female shortly after her emergence as an adult.
Furthermore, with our definition of extinction, a single long-lived
female can delay extinction by several weeks, even though she
has mated with an OX3604C male and will produce no flying
female progeny. This appears to have happened in Cage A
where all eggs produced from Week 12 PR were transgenic, but
extinction did not occur until Week 20 PR. Alternately, a rare
nonhomozygous male in the OX3604 release population could
have led to the more protracted extinction time.

We conclude that the release of outcrossed OX3604C males
can successfully eliminate target populations of Ae. aegypti in a
laboratory caged system. We also conclude that OX3604C males
competed effectively with target males for target females, as
revealed by the production of offspring expressing DsRed.
Future field trials need to account for the rate of immigration
of wild-type males and females into target populations. This in-
cludes movement of mosquitoes from outside the treatment area
into it and the emergence in the treatment areas of estivated
embryos in seasonally flooded breeding sites. These circum-
stances represent key differences from a fully contained cage
trial. Our data support the transition to field trials with the
expectation that release of outcrossed OX3604C or similar
mosquitoes will result in a similar significant local suppression
or elimination of the target mosquito populations.

Materials and Methods

Outcrossed Homozygous 0X3604C. The outcrossed OX3604C homozygous
strain of genetically engineered males released in this experiment was estab-
lished by first outcrossing the OX3604C strain (14) to a GDLS established
in 2006 (27). Virgin male OX3604C were caged with virgin female GDLS,
and a cage containing the reciprocal cross was established. The resulting
F1 heterozygous adults were allowed to intercross, eggs were hatched, and
1,000 larvae expressing DsRed were collected, reared to adults, and mated
individually to virgin GDLS adults. This was repeated for four additional gen-
erations so that as much as 96.9% (1 — (1/32)) of the genome could consist
of GDLS. The frequency of the RIDL construct was increased through selection
of DsRed larvae for four generations to generate a homozygous line of
the outcrossed OX3604C strain. A total of 250 single-pair families then were
established using only DsRed mosquitoes. Eggs were collected and hatched
from each family and those families with wild-type larvae discarded. DsRed-
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only mosquitoes were reared to adults, sib-mated, and the resulting larvae
screened again for the DsRed marker. Any families with even a single
wild-type larva were discarded and the remaining families were expected
to be homozygous. These families were then intercrossed to provide the out-
crossed OX3604C strain.

Target Ae. aegypti Population. Target populations were established in each
of the six large laboratory cages (Fig. S1) over the course of 12 weeks using
a GDLS derived from 10 geographically distinct populations in Chiapas,
Mexico, in 2008 (28). Each cage was accessed through a series of three
sleeves, two of which opened to shelves, and the third opening to the cage
floor, which allowed introduction and removal of a BG-Sentinel Mosquito
Trap™ (BGS-Trap Biogents AG; Fig. S1). The shelves in each cage held a
total of six oviposition containers (OPSs, three on each shelf; Fig. S1), which
were glass Pyrex containers. All OPSs were filled with 600 ml tap water,
which was changed weekly, and were lined with white paper towels (Scott®
brand, Kimberly-Clark) for oviposition. The caged populations of mosquitoes
were reared and maintained under a 12:12 LD photoperiod at 27°C+2°C
and 82% + 3% humidity. Larvae were fed ground brewer’s yeast tablets ad
libitum. Adult mosquitoes were provided with raisins and allowed to feed
weekly on restrained mice.

The method by which the target populations were established was
conducted in two parts, initiation and maintenance. Initiation (Weeks 0-3)
consisted of adding 300 second-instar GDLS larvae (50/0PS) for an initial
population of 1,200 mosquitoes. Females began to oviposit at Week 3, after
which the population was maintained (Weeks 4-12). Eggs laid by existing
females were returned to their respective cages as second-instar larvae at
a return rate of 200/week (approximately 33/0OPS). Egg and adult densities
were monitored weekly during target-population establishment. Egg densi-
ties were determined by counting the total number of eggs laid weekly in
each cage. Adult sample collection commenced in Week 3. Adults were
sampled placing a BGS-Trap into each cage for 1 h weekly. Adults were
counted and sexed on cold plates and then returned to their respective cages.
The adults experienced 5-25% mortality associated with trapping and
handling.

Release of 0X3604C Males. Weekly releases consisted of hatching 2,100
0X3604C eggs without tetracycline (to produce the flightless-female pheno-
type) per treatment cage and then rearing these larvae to pupae. Pupae
were collected over the course of 3 d and placed in a covered pupal emer-
gence container (PEC; Fig. S1) within each treatment cage. The PEC remained
covered to prevent oviposition by females but was uncovered once daily to
allow males to escape. Sexing the pupae was unnecessary because emerging
females either drowned in the PEC or fell to the floor of the cage, where they
died. We estimate that 2,100 OX3604C eggs per week led to the weekly ad-
dition of approximately 1,800 total pupae (approximately 900 male pupae)
to each treatment cage. This release number was kept constant, and at the
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first OX3604C male release (Week 13) it was 8.5-10 times the weekly return
rate of 200 second-instar/larvae/week (approximately 100 males). Because
the mosquito population decreased over time in the treatment cages, this
ratio correspondingly increased, from 8.5-10:1 OX3604C:target males at
Week 0 PR to between 600:1 to 900:1 at population extinction (Fig. S2).

Population Maintenance Post 0X3604C Release. After OX3604C male release
was initiated at Week 13 (Week 0 PR), the number of larvae added back
to each cage was adjusted to reflect any impact of OX3604C male release
on egg and adult densities. The number of larvae returned to the three
control cages remained constant at 200 second-instar larvae/week. However,
the number of larvae added back to the treatment cages was changed to a
rate proportional to egg densities in the control cages. For example, if a con-
trol cage produced 5,000 eggs one week and we returned 200 second-instar
larvae to that cage, then we returned 4% (200/5000) of the eggs. If a treated
cage in the same week produced 600 eggs, then 24 larvae (600 x 0.04) would
be returned, or, if conversely, a treated cage the same week produced 15,000
eggs then 600 larvae (15,000 x 0.04) would be returned. Consistent with this
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methodology, equal numbers of larvae were returned to each cage when
egg densities were the same in treated and controls. If egg densities were
lower in treated cages then fewer larvae were returned to the treated cage,
and if egg densities were greater in treated cages (if for example, there was a
greater survival of larvae due to density dependence), then more larvae were
returned to the treated cage. If 200 larvae each week had been returned to
the treated cages, the return rate would be artificially increased if egg
densities in treated cages were low, and, conversely, artificially decreased
the return rate when egg densities from treated cages were high.
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